The signal in loudspeaker cables is essentially the opposite
of the signal in interconnects. Both cables have the same
information, but in loudspeaker solar wire, the voltage is small
and the current is large, relatively speaking. Because of
the high current, both resistance and inductance are
important in loudspeaker cables. The higher the resistance,
the greater the amount of energy that will be absorbed by
the cables. The resistance will not cause any distortion,
but it will decrease the volume of the sound. The inductance
on the other hand, can cause distortion. As the current
oscillates between being positive and negative, the
inductance slows the current changes down, and causes
delays.
How a cable lets outside sources of energy affect the signal
As stated previously, the second fundamental way of altering
a signal passing through an audio control cable is to introduce
outside sources of energy. This outside energy is typically
termed "noise". By definition, if any energy is absorbed by
the signal, the signal has been distorted.
There are many potential sources of noise around audio
cables. Some of the more common sources of noise, such as
radio frequency waves, are familiar to most people. When
wiring up a radio, frequently a consumer must attach an
antenna. Antennae are intentionally designed to channel
radio frequency energy into a stereo. Just like an antenna,
it is entirely possible for an audio cable to pick up radio
frequency energy. If you are not intending to listen to the
radio, this is not a welcome effect.
https://youtu.be/yVPMXtgUWF8
Electronic components, electrical cords, sound waves, and
even the sun, are all capable of creating noise. Electrical
cords create electromagnetic fields around them that can
transfer energy to a rubber cable. Sound waves create mechanical
vibrations that can be transformed into electrical energy
that is added to an audio signal. Because there are so many
different types of noise, there are many methods used to
prevent a cable from picking up noise. Shielding, twisting
of conductors, and mechanical damping are all common noise
protection methods in cables.
While noise affects both interconnects and loudspeaker
electrical power cables, generally the effects are far more significant in
interconnects. This is because the signals in the
interconnects have far less energy. Since most forms of
noise are inherently low energy to begin with, this means
that it is far easier for them to modify the low energy
interconnect signals than the high-energy loudspeaker cable
signals.
http://www.centralplaincable.com/html/en/products/powercable/